Imports metadata from a MIDAR template (.xlsm/.xlsx) file and associates it with analysis data.
Usage
import_metadata_midarxlm(
data = NULL,
path,
ignore_warnings = FALSE,
excl_unmatched_analyses = FALSE
)
Examples
mexp <- MidarExperiment()
mexp <- import_data_masshunter(
data = mexp,
path = system.file("extdata", "Example_MHQuant_Small.csv", package = "midar"),
import_metadata = TRUE)
#> ✔ Imported 65 analyses with 16 features
#> ℹ `feature_area` selected as default feature intensity. Modify with `set_intensity_var()`.
#> ✔ Analysis metadata associated with 65 analyses.
#> ✔ Feature metadata associated with 16 features.
mexp <- import_metadata_midarxlm(
data = mexp,
path = system.file("extdata", "Example_Metadata_Small.xlsm", package = "midar"),
excl_unmatched_analyses = FALSE)
#> ✔ Analysis metadata associated with 65 analyses.
#> ✔ Feature metadata associated with 16 features.
#> ✔ Internal Standard metadata associated with 2 ISTDs.
#> ✔ Response curve metadata associated with 12 analyses.
print(mexp)
#>
#> ── MidarExperiment ─────────────────────────────────────────────────────────────
#> Title:
#>
#> Processing status: Annotated raw AREA values
#>
#> ── Annotated Raw Data ──
#>
#> • Analyses: 65
#> • Features: 16
#> • Raw signal used for processing: `feature_area`
#>
#> ── Metadata ──
#>
#> • Analyses/samples: ✔
#> • Features/analytes: ✔
#> • Internal standards: ✔
#> • Response curves: ✔
#> • Calibrants/QC concentrations: ✖
#> • Study samples: ✖
#>
#> ── Processing Status ──
#>
#> • Isotope corrected: ✖
#> • ISTD normalized: ✖
#> • ISTD quantitated: ✖
#> • Drift corrected variables: ✖
#> • Batch corrected variables: ✖
#> • Feature filtering applied: ✖
#>
#> ── Exclusion of Analyses and Features ──
#>
#> • Analyses manually excluded (`analysis_id`): NA