Package index
MidarExperiment
Functions to create, access and query MidarExperiment objects, which are the central data object in the MiDAR workflow.
-
MidarExperiment()
- Constructor for the MidarExperiment object.
-
MidarExperiment-class
- S4 Class Representing the MIDAR Dataset
-
`$`(<MidarExperiment>)
- Access Slots of a MidarExperiment Object via $ Syntax
-
set_analysis_order()
- Set Analysis Order
-
get_batch_boundaries()
- Get the start and end analysis numbers of specified batches
-
exclude_analyses()
- Exclude analyses from the dataset
-
exclude_features()
- Exclude features from the dataset
-
get_analyticaldata()
- Get the annotated or the originally imported analytical data
-
set_intensity_var()
- Set default variable to be used as feature raw signal value
-
get_analysis_count()
- Get the number of analyses in the dataset
-
get_analyis_start()
- Get the start time of the analysis sequence
-
get_analyis_end()
- Get the end time of the analysis sequence
-
get_analysis_breaks()
- Get the number of analysis breaks in the analysis
-
get_analysis_duration()
- Get the total duration of the analysis
-
get_runtime_median()
- Get the median run time
-
get_feature_count()
- Get the number of features in the dataset
-
get_featurelist()
- Get feature IDs
Analysis data import
Functions to import analytical data from different sources into MidarExperiment objects. Additionally, the file parser function used internally by these import functions are available for direct use, i.e. to import different analytical data into data frames.
-
import_data_mrmkit()
- Import MRMkit peak integration results
-
import_data_masshunter()
- Import Agilent MassHunter Quantitative Analysis CSV files
-
import_data_csv()
- Import Analysis Results from Plain CSV Files
-
parse_mrmkit_result()
- Parses MRMkit peak integration results into a tibble
-
parse_masshunter_csv()
- Reads and parses one Agilent MassHunter Quant CSV result file
-
parse_plain_csv()
- Reads a long CSV file with Feature Intensities
Metadata import
Functions to import metadata describing the analyses (samples), features (analytes), internal standards and other relevant information from the MiDAR Excel template or CSV files.
-
import_metadata_analyses()
- Import analysis metadata
-
import_metadata_features()
- Import feature metadata
-
import_metadata_istds()
- Import Internal Standards (ISTD) metadata
-
import_metadata_responsecurves()
- Import response curves metadata
-
import_metadata_qcconcentrations()
- Import calibration curves metadata
-
import_metadata_msorganiser()
- Import Metadata from a MIDAR Metadata Organizer file
-
import_metadata_from_data()
- Retrieve Metadata from Imported Analysis Data
-
save_metadata_templates()
- Saves a Excel (xlsx) file with metadata templates
-
save_metadata_msorganiser_template()
- Saves a MiDAR Metadata Organizer template
-
add_metadata()
- Add metadata an MidarExperiment object
-
assert_metadata()
- Add metadata an MidarExperiment object
-
correct_interferences()
- Apply interference correction
-
correct_interference_manual()
- Manual isotopic interference correction
-
quantify_by_calibration()
- Calculate concentrations based on external calibration
-
plot_calibrationcurves()
- Plot Calibration Curves
-
calc_calibration_results()
- Calculate external calibration curve results
-
get_calibration_metrics()
- Get Calibration Metrics
-
get_qc_bias_variability()
- Retrieve Calibration Regression Results
Normalization and Quantification
Functions to normalization by internal standards and sample amounts, to calculate analyte concentrations based on internal standards amounts or external calibration curves.
-
normalize_by_istd()
- Normalize Feature Intensities Using Internal Standards
-
quantify_by_istd()
- Calculate Analyte Concentrations Using Internal Standards
-
quantify_by_calibration()
- Calculate concentrations based on external calibration
-
correct_drift_gaussiankernel()
- Drift Correction by Gaussian Kernel Smoothing
-
correct_drift_cubicspline()
- Drift Correction by Cubic Spline Smoothing
-
correct_drift_loess()
- Drift Correction by LOESS Smoothing
-
correct_drift_gam()
- Drift Correction by Generalized Additive Model (GAM) Smoothing
-
correct_batch_centering()
- Batch Centering Correction
Quality Control and Filtering
Functions to calculate feature QC metrics and apply QC filtering, and vizualize the filtering results.
-
calc_qc_metrics()
- Calculate Quality Control (QC) Metrics for Features
-
filter_features_qc()
- Feature Filtering Based on QC Criteria
-
detect_outlier()
- Get list of analyses classified as technical outliers
-
plot_qc_summary_byclass()
- Plot QC Filtering Summary by Feature Class
-
plot_qc_summary_overall()
- Plot Overall QC Filtering Summary
-
plot_runsequence()
- RunSequence Plot
-
plot_runscatter()
- RunScatter Plot
-
plot_rla_boxplot()
- Relative Log Abundance (RLA) Plot
-
plot_pca()
- PCA Plot for Quality Control
-
plot_normalization_qc()
- Compare %CV values before and after normalization
-
plot_qcmetrics_comparison()
- Comparison of two feature QC metrics variables
-
plot_responsecurves()
- Plot Response Curves
-
get_response_curve_stats()
- Linear Regression Statistics of Response Curves
Data Reporting and Sharing
Functions to export processed and raw datasets and the processing steps in different formats.
-
save_report_xlsx()
- Write Data Processing Report (EXCEL)
-
save_dataset_csv()
- Export Data to CSV file
-
save_feature_qc_metrics()
- Save Feature QC Metrics to CSV
-
get_lipid_class_names()
- Get lipid class, species and transition names
-
lipidomics_dataset
- Plasma Lipidomics Dataset with Metadata
-
quant_lcms_dataset
- LC-MS Dataset with External Calibration Curve and Metadata
-
data_load_example()
- Load an example MidarExperiment dataset
Helper functions
A collection of functions that may be useful in the context of mass spectrometry is also available.
-
cv()
- Percent coefficient of variation (%CV)
-
cv_log()
- Percent coefficient of variation (%CV) based on log-transformation
-
calc_average_molweight()
- Calculate Average Molecular Weight from Chemical Formulas
-
save_dataset_csv()
- Export Data to CSV file
-
fun_correct_drift()
- Drift Correction by Custom Function
-
fun_gauss.kernel.smooth()
- Gaussian Kernel smoothing helper function
-
fun_loess()
- Loess smoothing helper function
-
fun_cspline()
- Cubic spline smoothing helper function
-
fun_gam_smooth()
- Generalized Additive Model (GAM) smoothing helper function
-
get_mad_tails()
- Get MAD-based tails
-
order_chained_columns_tbl()
- Reorder Data Frame based on a chain of linked values in two columns.