Package index
MidarExperiment
Functions to create, access and query MidarExperiment objects, which are the central data object in the MiDAR workflow.
-
MidarExperiment()
- Constructor for the MidarExperiment object.
-
MidarExperiment-class
- S4 Class Representing the MIDAR Dataset
-
analysis_type(<MidarExperiment>)
- Get
analysis_type
-
`analysis_type<-`(<MidarExperiment>)
- Set
analysis_type
-
`analysis_type<-`()
- Get analysis type
-
metadata_responsecurves(<MidarExperiment>)
- Get response curve metadata
-
`metadata_responsecurves<-`(<MidarExperiment>)
- Set response curve metadata
-
`metadata_responsecurves<-`()
- metadata_responsecurves method
-
analysis_type()
- Set analysis type
-
`$`(<MidarExperiment>)
- Getter for specific slots of an MidarExperiments object
-
set_analysis_order()
- Set Analysis Order
-
get_batch_boundaries()
- Get the start and end analysis numbers of specified batches
-
exclude_analyses()
- Exclude Analyses from the Dataset
-
exclude_features()
- Exclude features from the dataset
-
combine_experiments()
- Combines a list of MidarExperiments into one
-
get_analyticaldata()
- Get the annotated or the originally imported analytical data
-
set_intensity_var()
- Set default variable to be used as feature raw signal value
Analysis data import
Functions to import analytical data from different sources into MidarExperiment objects. Additionally, the file parser function used internally by these import functions are available for direct use, i.e. to import different analytical data into data frames.
-
import_data_mrmkit()
- Imports MRMkit peak integration results
-
import_data_masshunter()
- Imports Agilent MassHunter Quantitative Analysis CSV files
-
import_data_csv()
- Import plain analysis results
-
parse_mrmkit_result()
- Parses MRMkit peak integration results into a tibble
-
parse_masshunter_csv()
- Reads and parses one Agilent MassHunter Quant CSV result file
-
parse_plain_csv()
- Reads a long CSV file with Feature Intensities
Metadata import
Functions to import metadata describing the analyses (samples), features (analytes), internal standards and other relevant information from the MiDAR Excel template or CSV files.
-
import_metadata_midarxlm()
- Import Metadata from MIDAR Template
-
import_metadata_from_data()
- Retrieve Metadata from Imported Analysis Data
-
import_metadata_analyses()
- Import analysis metadata
-
import_metadata_features()
- Import feature metadata
-
import_metadata_istds()
- Import Internal Standards (ISTD) metadata
-
import_metadata_responsecurves()
- Import response curves metadata
-
import_metadata_qcconcentrations()
- Import calibration curves metadata
-
metadata_responsecurves()
- metadata_responsecurves method
-
assert_metadata()
- Add metadata an MidarExperiment object
-
add_metadata()
- Add metadata an MidarExperiment object
-
plot_calibrationcurves()
- Plots calibration curves for each measured feature.
-
calc_calibration_results()
- Calculate external calibration curve results
-
get_calibration_results()
- Get a calibration regression results
Normalization and Quantification
Functions to normalization by internal standards and sample amounts, to calculate analyte concentrations based on internal standards amounts or external calibration curves.
-
normalize_by_istd()
- Normalize Feature Intensities Using Internal Standards
-
quantify_by_istd()
- Calculate Analyte Concentrations Based on Internal Standards
-
quantify_by_calibration()
- Calculate concentrations based on external calibration
-
correct_drift_loess()
- Drift Correction by LOESS Smoothing
-
correct_drift_gaussiankernel()
- Drift Correction by Gaussian Kernel Smoothing
-
corr_drift_fun()
- Drift Correction by Custom Function
-
fun_gauss.kernel.smooth()
- Gaussian Kernel smoothing helper function
-
fun_loess()
- Loess smoothing helper function
-
correct_batch_centering()
- Batch Centering Correction
-
correct_interferences()
- Substract interferences contributed by another feature
Quality Control and Filtering
Functions to calculate feature QC metrics and apply QC filtering, and vizualize the filtering results.
-
qc_calc_metrics()
- Calculate feature quality control (QC) metrics
-
filter_features_qc()
- Feature Filtering Based on Quality Control Criteria
-
plot_qc_summary_byclass()
- Plot QC Filtering Summary by Feature Class
-
plot_qc_summary_overall()
- Plot Overall QC Filtering Summary
-
plot_runsequence()
- Run Sequence Plot to Visualize Analysis Design and Timelines
-
plot_runscatter()
- Create a Run Scatter Plot to Visualize Analyte Distributions
-
plot_rla_boxplot()
- Relative Log Abundance (RLA) Plot
-
plot_pca()
- PCA Plot for Quality Control
-
plot_cv_normalization()
- Comparison of CV values before and after normalization
-
plot_x_vs_y()
- Contrast two variables from QC metrics table for all features per feature class
-
plot_responsecurves()
- Plot Response Curves
-
get_response_curve_stats()
- Linear regression statistics of response curves
Data Reporting and Sharing
Functions to export processed and raw datasets and the processing steps in different formats.
-
save_report_xlsx()
- Writes all a data processing report to an EXCEL file
-
save_dataset_csv()
- Export any parameter to a wide-format table
-
report_write_qc_metrics()
- Save the QC table to a CSV file
-
get_lipid_class_names()
- Retrieve lipid name, lipid class and transition from feature names
-
lipidomics_dataset
- Plasma Lipidomics Peak Areas Dataset
-
data_load_example()
- Load an example MidarExperiment dataset
Helper functions
A collection of functions that may be useful in the context of mass spectrometry is also available.
-
cv_log()
- Coefficient of variation (CV) using log-transformed data
-
save_dataset_csv()
- Export any parameter to a wide-format table