This function generates scatter plots comparing two QC metrics variables
across feature classes. A list of available QC metrics is available from the
calc_qc_metrics() documentation.
Arguments
- data
A
MidarExperimentobject containing pre-calculated QC metrics.- x_variable
The name of the QC metric variable to be plotted on the x-axis.
- y_variable
The name of the QC metric variable to be plotted on the y-axis.
- col_pattern
A string pattern to match the columns in the QC metrics
- facet_by_class
If
TRUE, facets the plot byfeature_class, as defined in the feature metadata.- filter_data
Logical; whether to use all data (default) or only QC-filtered data (filtered via
filter_features_qc()).- include_qualifier
Logical; whether to include qualifier features (default is
TRUE).- equality_line
Logical; whether to show a line indicating identical values in both compared variables (default is
FALSE).- threshold_value
Numeric; threshold value to be shown as dashed lines from both axes on the plot (default is
NA).- xlim
Numeric vector of length 2 for x-axis limits. Use
NAfor auto-scaling (default isc(0, NA)).- ylim
Numeric vector of length 2 for y-axis limits. Use
NAfor auto-scaling (default isc(0, NA)).- cols_page
Integer; number of facet columns per page (default is
5).- point_size
Numeric; size of points in millimeters (default is
1).- point_alpha
Numeric; transparency of points (default is
0.5).- font_base_size
Numeric; base font size in points (default is
8).
Details
x_variableandy_variablemust be available in the QC metrics table. Please refer to the help page ofcalc_qc_metrics()for more information on the available QC metric variables.When
facet_by_class = TRUE, then thefeature_classmust be defined in the metadata or retrieved via specific functions, e.g.,parse_lipid_feature_names().