Calculate a statistical test for linearity from Kroll et. al. (2000) doi:10.5858/2000-124-1331-EOTEON using average deviation from linearity.
Arguments
- curve_data
A data frame or tibble containing curve data.
- conc_var
Column name in
curve_data
to indicate concentration.- signal_var
Column name in
curve_data
to indicate signal.
Value
A data frame of statistical results from Kroll et. al. (2000) doi:10.5858/2000-124-1331-EOTEON
adl_kroll
: Average deviation from linearity as defined in Kroll et. al. (2000) doi:10.5858/2000-124-1331-EOTEONprecision_on_percent_scale
: Estimate of precision on percent scale. It is the ratio of the estimated regression standard error from the best-fit polynomial and the estimated solution mean.uncorrected_critical_value
: Critical value (Uncorrected) as defined in Kroll et. al. (2000) doi:10.5858/2000-124-1331-EOTEONcorrected_critical_value
: Critical value (Corrected) as defined in Hsieh et. al. (2008) doi:10.1080/10543400802071378uncorrected_kroll_results
: Indicate ifadl_kroll
is less thanuncorrected_critical_value
IfFALSE
, there is sufficient evidence to reject the hypothesis that the points are linear.corrected_kroll_results
: Indicate ifadl_kroll
is less thancorrected_critical_value
IfFALSE
, there is sufficient evidence to reject the hypothesis that the points are linear.best_model
Gives values linear, quadratic or cubic to indicate the model that "best fit" the points. The functioncompare_performance
is used to determine the best fit.
References
Kroll, M. H., Praestgaard, J., Michaliszyn, E.,
& Styer, P. E. (2000).
Evaluation of the extent of nonlinearity
in reportable range studies.
Archives of pathology & laboratory medicine,
124(9), 1331–1338.
doi:10.5858/2000-124-1331-EOTEON
Hsieh E., & Liu J. P. (2008).
On Statistical Evaluation of the
Linearity in Assay Validation
Journal of Biopharmaceutical Statistics,
18(4), 677–690.
doi:10.1080/10543400802071378
Examples
# Data from Kroll's 2000 paper
solution_number <- c(
1, 1, 2, 2, 3, 3, 4, 4,
5, 5, 6, 6, 7, 7
)
result <- c(
352, 348, 1009, 991, 1603, 1584, 3100, 3200,
4482, 4390, 5101, 5046, 5669, 5516
)
curve_data <- data.frame(
Solution_Number = solution_number,
Result = result
)
adl_result <- calculate_adl_kroll_test(
curve_data,
"Solution_Number",
"Result"
)
adl_result
#> # A tibble: 1 × 7
#> adl_kroll precision_on_percent_scale uncorre…¹ corre…² uncor…³ corre…⁴ best_…⁵
#> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 8.63 5.54 7.61 2.86 FALSE FALSE cubic
#> # … with abbreviated variable names ¹uncorrected_critical_value,
#> # ²corrected_critical_value, ³uncorrected_kroll_results,
#> # ⁴corrected_kroll_results, ⁵best_model