Skip to contents

The same workflow in README can be rewritten as a Tidyverse workflow

library(lancer)

# Data Creation

concentration <- c(
  10, 20, 25, 40, 50, 60,
  75, 80, 100, 125, 150,
  10, 25, 40, 50, 60,
  75, 80, 100, 125, 150
)

curve_batch_name <- c(
  "B1", "B1", "B1", "B1", "B1",
  "B1", "B1", "B1", "B1", "B1", "B1",
  "B2", "B2", "B2", "B2", "B2",
  "B2", "B2", "B2", "B2", "B2"
)

sample_name <- c(
  "Sample_010a", "Sample_020a", "Sample_025a",
  "Sample_040a", "Sample_050a", "Sample_060a",
  "Sample_075a", "Sample_080a", "Sample_100a",
  "Sample_125a", "Sample_150a",
  "Sample_010b", "Sample_025b",
  "Sample_040b", "Sample_050b", "Sample_060b",
  "Sample_075b", "Sample_080b", "Sample_100b",
  "Sample_125b", "Sample_150b"
)

curve_1_saturation_regime <- c(
  5748124, 16616414, 21702718, 36191617,
  49324541, 55618266, 66947588, 74964771,
  75438063, 91770737, 94692060,
  5192648, 16594991, 32507833, 46499896,
  55388856, 62505210, 62778078, 72158161,
  78044338, 86158414
)

curve_2_good_linearity <- c(
  31538, 53709, 69990, 101977, 146436, 180960,
  232881, 283780, 298289, 344519, 430432,
  25463, 63387, 90624, 131274, 138069,
  205353, 202407, 260205, 292257, 367924
)

curve_3_noise_regime <- c(
  544, 397, 829, 1437, 1808, 2231,
  3343, 2915, 5268, 8031, 11045,
  500, 903, 1267, 2031, 2100,
  3563, 4500, 5300, 8500, 10430
)

curve_4_poor_linearity <- c(
  380519, 485372, 478770, 474467, 531640, 576301,
  501068, 550201, 515110, 499543, 474745,
  197417, 322846, 478398, 423174, 418577,
  426089, 413292, 450190, 415309, 457618
)

curve_batch_annot <- tibble::tibble(
  Sample_Name = sample_name,
  Curve_Batch_Name = curve_batch_name,
  Concentration = concentration
)

curve_data <- tibble::tibble(
  Sample_Name = sample_name,
  `Curve_1` = curve_1_saturation_regime,
  `Curve_2` = curve_2_good_linearity,
  `Curve_3` = curve_3_noise_regime,
  `Curve_4` = curve_4_poor_linearity
)

curve_name <- c("Curve_1", "Curve_2", "Curve_3", "Curve_4")
curve_class <- c("Class_1", "Class_1", "Class_2", "Class_2")

curve_name_annot <- tibble::tibble(
  Curve_Name = curve_name,
  Curve_Class = curve_class
)
# Create curve table and curve statistical summary
curve_summary <- lancer::create_curve_table(
  curve_batch_annot = curve_batch_annot,
  curve_data_wide = curve_data,
  common_column = "Sample_Name",
  signal_var = "Signal",
  column_group = "Curve_Name"
) |>
  lancer::summarise_curve_table(
    grouping_variable = c(
      "Curve_Name",
      "Curve_Batch_Name"
    ),
    conc_var = "Concentration",
    signal_var = "Signal"
  ) |>
  lancer::evaluate_linearity(grouping_variable = c(
      "Curve_Name",
      "Curve_Batch_Name"
  )) |>
  dplyr::left_join(curve_name_annot, by = "Curve_Name")
print(curve_summary, width = 100)
#> # A tibble: 8 × 12
#>   Curve_Name Curve_Batch_Name wf1_group      wf2_group         r_corr pra_linear
#>   <chr>      <chr>            <chr>          <chr>              <dbl>      <dbl>
#> 1 Curve_1    B1               Poor Linearity Saturation Regime  0.963       70.5
#> 2 Curve_2    B1               Good Linearity Good Linearity     0.990       92.8
#> 3 Curve_3    B1               Poor Linearity Noise Regime       0.964       71.2
#> 4 Curve_4    B1               Poor Linearity Poor Linearity     0.311     -251. 
#> 5 Curve_1    B2               Poor Linearity Saturation Regime  0.950       62.3
#> 6 Curve_2    B2               Good Linearity Good Linearity     0.995       94.3
#> 7 Curve_3    B2               Poor Linearity Noise Regime       0.978       74.7
#> 8 Curve_4    B2               Poor Linearity Poor Linearity     0.608      -73.1
#>   mandel_p_val concavity r2_linear r2_adj_linear mandel_stats Curve_Class
#>          <dbl>     <dbl>     <dbl>         <dbl>        <dbl> <chr>      
#> 1   0.0000297  -4174.       0.928        0.920         71.2   Class_1    
#> 2   0.150         -4.91     0.980        0.978          2.53  Class_1    
#> 3   0.00000678     0.468    0.930        0.922        106.    Class_2    
#> 4   0.00660      -20.5      0.0970      -0.00333       13.2   Class_2    
#> 5   0.000166   -4137.       0.903        0.890         52.9   Class_1    
#> 6   0.382         -1.94     0.990        0.988          0.868 Class_1    
#> 7   0.00256        0.321    0.956        0.951         20.9   Class_2    
#> 8   0.0533       -22.9      0.370        0.291          5.39  Class_2

Results can be exported to Excel via write_summary_excel

lancer::write_summary_excel(
  curve_summary = curve_summary,
  file_name = "curve_summary.xlsx")