Skip to contents

Get the summary statistics of the curve data for one group or batch.

Usage

summarise_curve_data(curve_data, conc_var, signal_var, details = FALSE)

Arguments

curve_data

A data frame or tibble containing curve data.

conc_var

Column name in curve_data to indicate concentration.

signal_var

Column name in curve_data to indicate signal.

details

If set to TRUE, will include more columns in the curve summary but there are mainly for development and testing.

Value

A tibble containing the Goodness of Fit measures of the linear model The Goodness of Fit measures are the Pearson correlation coefficient (R), R^2, adjusted R^2, Bayesian Information Criterion (BIC), Pearson correlation p value, Mandel test statistics and p value, Percent Residual Accuracy and Concavity.

Details

The function will return a tibble with NA values if the number of curve points is less than or equal to three.

Examples

concentration <- c(10, 20, 40, 60, 80, 100)

signal <- c(22561, 31178, 39981, 48390, 52171, 53410)

curve_data <- data.frame(Concentration = concentration,
                         Signal = signal)

curve_summary <- summarise_curve_data(curve_data,
                                      "Concentration",
                                      "Signal")
print(curve_summary, width = 100)
#> # A tibble: 1 × 7
#>   r_corr r2_linear r2_adj_linear mandel_stats mandel_p_val pra_linear concavity
#>    <dbl>     <dbl>         <dbl>        <dbl>        <dbl>      <dbl>     <dbl>
#> 1  0.956     0.913         0.892         70.1      0.00357       66.4     -4.09